Genetic analysis of the interaction between bacteriophage T7 DNA polymerase and Escherichia coli thioredoxin.

نویسندگان

  • J S Himawan
  • C C Richardson
چکیده

Gene 5 protein of bacteriophage T7 is a nonprocessive DNA polymerase. During infection of Escherichia coli, T7 annexes the host protein thioredoxin for use as a processivity factor for T7 DNA polymerase. We describe here a genetic method to investigate the interaction between T7 gene 5 protein and E. coli thioredoxin. The strategy is to use thioredoxin mutants that are unable to support the growth of wild-type T7 phage to select for T7 revertant phage that suppress the defect in thioredoxin. A thioredoxin mutation that replaces glycine at position 74 with aspartic acid fails to support the growth of wild-type T7. This mutation is suppressed by six different mutations within T7 gene 5, each of which results in a single amino acid substitution within gene 5 protein. Three of the suppressor mutations are located within the putative polymerization domain of gene 5 protein, and three are located within the putative 3'-to-5' exonucleolytic domain. Each suppressor mutation alone is necessary and sufficient to confer the revertant phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions of gene 2.5 protein and DNA polymerase of bacteriophage T7.

Bacteriophage T7 gene 2.5 protein has been shown to interact with T7 DNA polymerase (the complex of T7 gene 5 protein and Escherichia coli thioredoxin) by affinity chromatography and fluorescence emission anisotropy. T7 DNA polymerase binds specifically to a resin coupled to gene 2.5 protein and elutes from the resin when the ionic strength of the buffer is raised to 250 mM NaCl. In contrast, T...

متن کامل

A covalent linkage between the gene 5 DNA polymerase of bacteriophage T7 and Escherichia coli thioredoxin, the processivity factor: fate of thioredoxin during DNA synthesis.

Gene 5 protein (gp5) of bacteriophage T7 is a non-processive DNA polymerase, which acquires high processivity by binding to Escherichia coli thioredoxin. The gene 5 protein-thioredoxin complex (gp5/trx) polymerizes thousands of nucleotides before dissociating from a primer-template. We have engineered a disulfide linkage between the gene 5 protein and thioredoxin within the binding surface of t...

متن کامل

Real-time kinetics of the interaction between the two subunits, Escherichia coli thioredoxin and gene 5 protein of phage T7 DNA polymerase.

T7 phage DNA polymerase is a tight 1:1 complex of the gene 5 protein (g5p) (80 kDa) of phage T7 and thioredoxin (12 kDa) from the Escherichia coli host. The holoenzyme is essential for the replication of the phage. We estimated the real-time kinetics and thermodynamics of the interaction of g5p with thioredoxin (wild type and mutants) using surface plasmon resonance. Thioredoxin was immobilized...

متن کامل

Escherichia coli thioredoxin stabilizes complexes of bacteriophage T7 DNA polymerase and primed templates.

The DNA polymerase activity induced after bacteriophage T7 infection of Escherichia coli is found in a complex of two proteins, the T7 gene 5 protein and a host protein, thioredoxin. Gene 5 protein is a DNA polymerase and a 3' to 5' exonuclease. Thioredoxin binds tightly to the gene 5 protein and increases the processivity of polymerization some 1000-fold. Gene 5 protein forms a short-lived com...

متن کامل

Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7.

Bacteriophage T7 gene 5 protein has been purified to apparent homogeneity from cells overexpressing its gene several hundred-fold. Gene 5 protein is a DNA polymerase with low processivity; it dissociates from the primer-template after catalyzing the incorporation of 1-50 nucleotides, depending on the salt concentration. Escherichia coli thioredoxin, a host protein that is tightly associated wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 89 20  شماره 

صفحات  -

تاریخ انتشار 1992